Главная » Файлы » Исследования, Медицина, Наука, Учёные |
12.08.2011, 17:18 | |
При этом "реформаторы" заявляют, что отменить эту математическую константу, выражающую отношение длины окружности к длине ее диаметра, следует вовсе не потому, что она "не справляется со своими обязанностями" (то есть не точна), а потому, что этим числом просто неудобно пользоваться. Но как же тогда вычислять длину окружности, спросите вы? Очень просто, ответят реформаторы. Вместо неудобного числа Пи следует использовать число Тау, которое выражает отношение длины окружности к ее радиусу. То есть, как вы понимаете, его значение в два раза больше числа Пи — если последнее приблизительно определяется как 3,14, то число Тау равно (тоже приблизительно) 6,28. За что же ученые мужи так взъелись на в общем-то не только безобидное, но и весьма полезное число Пи? Об этом может поведать один из самых непримиримых противников использования данной константы, бывший физик-теоретик, а ныне педагог Майкл Хартл из США: "Несмотря на то, что прибегать к использованию числа Пи — путь ошибочный, непосредственно в самом определении этой постоянной никакой ошибки нет. Данная буква означает именно то, что вы хотите — так называемое отношение длины окружности к диаметру. Однако посудите сами — ведь окружность не диаметром задается, а радиусом. В соответствии со стандартным определением, окружностью называется фигура, которая состоит из всех точек плоскости, отнесенных от некоего центра на конкретную длину — то есть на радиус". Итак, по мнению Хартла, вина числа Пи заключается всего лишь в том, что оно просто "неестественное". При этом ученый утверждает, что использование данной константы может сказаться на формировании сознания юных математиков. "Когда вы начинаете задавать геометрическую постоянную круга посредством отношения длины окружности к ее диаметру, то это можно считать ни чем иным, как делением ее на удвоенный радиус, и данная двойка станет преследовать ваш ум в процессе всех вычислений", — предостерегает Хартл. По мнению ученого, использование числа Тау избавит психику математика от этой самой "преследующей двойки" и сделает многие расчеты параметров окружности и круга проще, быстрее и удобнее. Кроме того, применение в расчетах именно этого числа таит в себе еще одну выгоду. Если измерять окружность не в градусах, а в радианах (радианом называется центральный угол, длина дуги которого равна радиусу окружности), то для того, чтобы выразить в данном случае полную окружность через Пи, нужно умножить радиус на два Пи, а при использовании числа Тау — потребуется умножить всего лишь на одно Тау. Сначала (с 2001 года, когда профессор Университета Юты (США) Боб Пале опубликовал первую статью, в которой доказывал ошибочность применения числа Пи) данное предложение рассматривалось большинством математиков как некая блажь коллег из Западного полушария. Но со временем у него нашлось много сторонников и среди ученых Старого Света. "Это одна из самых странных вещей, которые мне пришлось увидеть, но она имеет смысл. Удивительно, как люди раньше этого не поняли. Почти все, что мы делаем с числом Пи, мы можем делать и с числом Тау, но когда мы противопоставляем Пи и Тау, то Тау выигрывает — оно гораздо более натурально", — говорит британец Кевин Хьюстон, математик из Университета Лидса. Итак, количество приверженцев числа Тау среди математиков неуклонно растет, хотя некоторые из них сомневаются в том, что его конкурента число Пи удастся так вот сразу упразднить. Ведь традиция использования данного числа имеет долгую историю. Есть сведения, что этой константой пользовались еще древнеегипетские, вавилонские и древнеиндийские математики. Самое раннее из известных приближенных значений этого числа датируется 1900 годом до нашей эры. Причем вавилоняне определяли его как 25/8, а египтяне — как 256/8. Интересно, что оба значения отличаются от истинного не более, чем на один процент. А ведический текст "Шатапатха-брахмана" указывает значение Пи как 339/108 (приблизительно равно 3,139), что тоже довольно близко к истине. | |
Просмотров: 1267 | Загрузок: 0 | |
Всего комментариев: 0 | |